lunedì 27 gennaio 2014

Sarà mica matematica 26, le soluzioni



Quelli che "tanto non ci riesco".

Quelli che "la matematica non mi è mai piaciuta".

Quelli che "prof, ormai abbiamo tredici anni!".

Quelli che "volevo farli, prof, ma non ho avuto tempo, dovevo fare lo shampoo al cane".

Quelli che "se è facoltativo vuol dire che si può non fare, quindi non lo faccio".

Quelli che "se c'entra qualcosa con la scuola, vuol dire che è palloso".

Quelli che "si fa fatica, prof...".

Quelli che "ma 'sta roba poi a cosa serve, nella vita?".

Quelli che "io sto zitto e basta".



Insomma tutti quelli che "se serve una scusa per non fare niente, io la trovo di sicuro" nelle ultime due settimane si sono dati un gran daffare. Naturalmente, non a cercare di risolvere i quesiti di Sarà mica matematica 26, quelli del

Risultato: solo Sarah T. e Sophia Z. hanno inviato le risposte ai due quesiti.



Il primo


Le date possibili sono:


24/01/2014
14/02/2014
12/04/2014
21/04/2014
24/10/2014
04/12/2014


Sophia spiega: inizio considerando i mesi dell'anno il cui numero contiene due delle cifre che compongono il 2014, quindi:

01 = gennaio

02 = febbraio

04 = aprile

10 = ottobre

12 = dicembre

Trovati i mesi, osservo i giorni di ognuno dei cinque mesi possibili, i cui numeri contengono le altre due cifre non citate nel mese relativo, quindi:


gennaio - le cifre che lo indicano sono 0 e 1, l'unico numero che non contiene queste cifre è 24.

febbraio - le cifre che lo indicano sono 0 e 2, l'unico numero che non contiene queste cifre è 14.

aprile - le cifre che lo indicano sono 0 e 4, i numeri che non contengono queste cifre sono 12 e 21.

ottobre - le cifre che lo indicano sono 1 e 0, l'unico numero che non contiene queste cifre è 24, come nel mese di gennaio.

dicembre - le cifre che lo indicano sono 1 e 2, l'unico numero che non contiene queste cifre è 04.



Più sintetica Sarah: "ho visto che i mesi possibili erano 01, 02, 04, 10, 12, poi ho combinato le altre cifre per i giorni."



Il secondo


Vediamo una per una le divisioni in questione.

Per le prime tre la situazione è simile.



2014:3=671,3333...

Il risultato è un numero periodico. Il periodo, in questo caso 3, si ripete all'infinito.

La 2014a cifra è 3.


2014:6=335,6666...

Di nuovo un numero periodico con periodo di una cifra.

La 2014a cifra è 6.


2014:9=223,7777...

Anche qui il risultato è un numero periodico, il 7 si ripete all'infinito.

La 2014a cifra è 7.



Nel quarto caso le cose si fanno un po' più complesse.


2014:7=287,714285714285...

È ancora un numero periodico, però le cifre che si ripetono (il periodo) sono sei: 714285. Quindi, devo trovare quel numero multiplo di 6 che si avvicina maggiormente a 2014.

Perciò eseguo la divisione 2014 : 6 = 335 con il resto di 4. Ciò significa che le sei cifre del periodo "ci stanno" esattamente 335 volte nel 2014.

Ora considero che 335 x 6 = 2010.  Significa che la 2010a cifra è l'ultima del periodo.

Per arrivare a 2014 mancano quattro cifre (il resto della divisione di prima). La quarta cifra del periodo è 2.

Quindi la 2014a cifra è 2.


Sarah e Sophia mi scuseranno se ho mescolato le loro parole  nel tentativo di essere più chiaro (probabilmente senza riuscirci...).


In chiusura mi complimento con loro due e a tutti gli altri non nascondo la mia delusione.

Per fortuna c'è chi decide di partecipare pur venendo da un'altra scuola! Sto parlando di Daniele, Riccardo, Nicolò e Michele, i quali frequentano la seconda B della scuola di Govone (CN). Tra loro, la prof Giovanna e me c'è stato un breve scambio di commenti (li potete leggere qui e qui), poi hanno deciso di inviare le loro soluzioni alla prof G, la quale le ha pubblicate qui, insieme a quelle dei suoi alunni. Un piccolo, piacevole, episodio che dovrebbe darci da riflettere.



A proposito, l'appuntamento per i prossimi quesiti è proprio dalla prof Giovanna con la nuova puntata di Due a settimana.

Voglio sperare che non partecipino solo Daniele, Riccardo, Nicolò e Michele! :-)

2 commenti:

giovanna ha detto...

Dai, pochi ma buoni.
Sarah e Sophia spiegano le date, noi no!
Brave,
ora vi aspetto da noi. Insieme ai vostri compagni, eh??
E vogliamo anche Daniele, Riccardo, Nicolò e Michele!
ciao, ciao
g

Davide Bortolas ha detto...

È un po’ come il bicchiere mezzo vuoto o mezzo pieno. Tu dici pochi ma buoni, io tendo sempre a vederli buoni ma pochi. :-)
Ho appena letto i nuovi quesiti di Due a settimana; domani ne parliamo a lezione. Poi conto di ricevere le risposte: buone E tante! :-)